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Abstract

In this paper, we propose Tortoise and Hare Guidance (THG), a training-free1

strategy that accelerates diffusion sampling while maintaining high-fidelity gen-2

eration. We demonstrate that the noise estimate and the additional guidance3

term exhibit markedly different sensitivity to numerical error by reformulating4

the classifier-free guidance (CFG) ODE as a multirate system of ODEs. Our5

error-bound analysis shows that the additional guidance branch is more robust to6

approximation, revealing substantial redundancy that conventional solvers fail to7

exploit. Building on this insight, THG significantly reduces the computation of the8

additional guidance: the noise estimate is integrated with the tortoise equation on9

the original, fine-grained timestep grid, while the additional guidance is integrated10

with the hare equation only on a coarse grid. We also introduce (i) an error-bound-11

aware timestep sampler that adaptively selects step sizes and (ii) a guidance-scale12

scheduler that stabilizes large extrapolation spans. THG reduces the number of13

function evaluations (NFE) by up to 30% with virtually no loss in generation fidelity14

(∆ImageReward ≤ 0.032) and outperforms state-of-the-art CFG-based training-15

free accelerators under identical computation budgets. Our findings highlight the16

potential of multirate formulations for diffusion solvers, paving the way for real-17

time high-quality image synthesis without any model retraining. The source code18

is available at https://github.com/Tortoise-and-Hare-Guidance/THG.19

1 Introduction20

Diffusion models (DMs) have become the state-of-the-art generative model for images [9, 32, 39]21

and, more recently, for video [18, 1, 43, 19] and audio-visual content [5, 33]. Despite their impressive22

quality, sampling is costly: each output is obtained by iteratively denoising a noisy sample, and the23

latency scales with the total number of function evaluations (NFE) required by the solver.24

Many practical scenarios, such as text-to-image synthesis, class-controlled synthesis, or in-context25

image editing, require conditional generation. The dominant technique for high-quality conditioning is26

classifier-free guidance (CFG) [16], which improves perceptual quality and controllability. However,27

CFG runs the denoising network twice per timestep—once conditional and once unconditional—28

thereby doubling the NFE. For real-time applications, such as interactive editing and large-scale29

serving, evaluating a deep backbone at every timestep remains a major bottleneck.30

A large body of work to accelerate these models has focused on two main approaches. Some31

approaches reduce the number of steps using higher-order ODE/SDE solvers [37, 38, 23] or distillation32

[35, 27], while others—such as cache-based strategies like DeepCache [26] and Learning-to-Cache33

[25]—lower the cost per step by reusing intermediate features. Nevertheless, both approaches still34

perform two forward passes whenever CFG is enabled, implicitly assuming that conditional and35

unconditional calls are equally indispensable.36
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Figure 1: Conceptual illustration of Tortoise and Hare Guidance. We decompose the standard
diffusion ODE into a tortoise branch (Eq. 6), which is numerically sensitive and thus integrated
on a fine-grained grid, and a hare branch (Eq. 7), which is comparatively less sensitive and can be
integrated with larger step sizes. Our multirate scheme evaluates each branch at different timestep
grids, skipping unnecessary evaluations, thereby boosting inference efficiency without sacrificing
sample quality.

Through the lens of numerical analysis, we revisit CFG by reformulating the reverse diffusion process37

as a two-state multirate system of ODEs whose trajectories are governed by the noise estimate38

and the additional guidance term. Our error-bound analysis reveals a pronounced asymmetry: the39

additional guidance term is more robust to approximation than the noise estimate, exposing substantial40

redundancy that conventional solvers fail to exploit. This finding raises a natural question: Do we41

need to compute the neural network twice at every fine-grained timestep?42

Leveraging this asymmetry, we introduce Tortoise and Hare Guidance (THG), a training-free43

sampler that bypasses most additional guidance computation. The noise estimate is integrated with44

the tortoise equation on the original fine-grained timestep grid. Meanwhile, the additional guidance is45

integrated with the hare equation only on a coarse grid. We further introduce (i) an error-bound-aware46

timestep sampler that adaptively determines the coarse grid, and (ii) a guidance-scale scheduler that47

keeps the trajectory stable over significant gaps.48

With these components, THG achieves sampling speeds up to 1.43× faster by reducing the49

NFE budget from 100 to as low as 70 while maintaining virtually identical generation fidelity50

(∆ImageReward ≤ 0.032). Moreover, across Stable Diffusion 1.5 [32] and 3.5 Large [39], our51

method outperforms state-of-the-art CFG-based training-free accelerators under identical computa-52

tion budgets. Our study highlights the potential of multirate formulations for accelerating diffusion53

models and brings us a step closer to achieving real-time performance and high-quality image54

synthesis without retraining the model.55

In summary, our contributions are threefold:56

• We are the first to cast the reverse diffusion ODE as a two-state multirate system of ODEs57

and to provide an error-bound analysis showing that the additional guidance term can be58

safely approximated at a much coarser temporal resolution.59

• We design Tortoise and Hare Guidance (THG), a training-free sampler that eliminates the60

need for a significant amount of additional guidance term evaluation. THG is compatible61

with any diffusion backbone.62

• Using image-text pairs from the COCO 2014 dataset, we demonstrate that THG can reduce63

NFEs up to 30% with virtually no loss in generation fidelity (∆ImageReward ≤ 0.032).64

THG outperforms state-of-the-art CFG-based accelerators under identical compute budgets.65
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2 Related work66

Diffusion models Denoising Diffusion Probabilistic Models (DDPMs) [17] laid the foundation67

for modern diffusion models by introducing a probabilistic framework. A forward Markov process68

gradually corrupts a data point x0 into Gaussian noise. In the reverse process, at each timestep t, a69

neural network ϵ̂θ(xt, t) estimates and removes the noise component in xt to recover xt−1, ultimately70

reconstructing x0. The denoising trajectory can be interpreted either as a stochastic differential71

equation (SDE) or its deterministic counterpart, the probability flow ODE (PF-ODE) [38]. Denoising72

Diffusion Implicit Models (DDIMs) [37] drop the strict Markov assumption of DDPMs and apply73

Tweedie’s formula [8] to jump directly from xt to xs, cutting sampling steps from hundreds of steps74

to as few as 50 and effectively solving the PF-ODE in a single deterministic pass [38].75

ODE-based integrators Viewing diffusion sampling as an initial-value ODE problem enables76

high-order integration techniques. Concretely, DPM-solver [23] observes that the diffusion ODE77

dxt/dt = f(t)xt + (g2(t)/2σt)ϵ̂θ(xt) (1)
has a semi-linear term f(t)xt. The need for approximation for the linear term is eliminated by78

solving the semi-linear ODE using the variation of constants formula. This semi-linear integrator79

then affords large step sizes with minimal approximation error. Inspired by these semi-linear methods,80

we introduce a multirate formulation for the classifier-free guidance (CFG) scheme [16] that adjusts81

the step size of each component of CFG to its own dynamics, achieving further reductions in the82

number of function evaluations (NFE) without degrading sample quality.83

Classifier-free guidance and its variations In real-world applications, diffusion models must84

produce samples that satisfy a given condition (e.g., class label or text prompt). Classifier Guidance85

[7] achieves this by incorporating a pre-trained classifier pϕ(c|xt), effectively sampling from the86

sharpened density p(x)p(c|x)ω , where ω controls the strength of the bias towards class c. Classifier-87

Free Guidance (CFG) [16] eliminates the need for an external classifier by training a single denoising88

network that gives both conditional and unconditional outputs. Concretely, if ϵ̂θ(xt, c) and ϵ̂θ(xt,∅)89

denote the network’s noise predictions with and without condition c, respectively, then CFG defines90

ϵ̂CFG
θ (xt, c) = ϵ̂θ(xt,∅) + ω · (ϵ̂θ(xt, c)− ϵ̂θ(xt,∅)). (2)

Subsequent variants focus on finding the optimal strength and timing of guidance for balancing91

condition fidelity against sample diversity. Guidance Interval [21] restricts the use of CFG to mid-92

level noise steps, avoiding over-conditioning at the beginning and final stages of the sampling process.93

CADS and Dynamic-CFG [34] slowly anneal either the conditioning vector or the scale ω during94

the early denoising steps, preserving diversity in the final samples. PCG [2] reformulates CFG as a95

predictor-corrector method (with ω′ = 2ω − 1) that alternates between denoising and sharpening96

phases. CFG++ [6] treats guidance as an explicit loss term rather than a sampling bias, splitting each97

DDIM iteration into “denoising” and “renoising” phases. Unlike these methods, we reformulate the98

diffusion ODE using a multirate method, integrating the noise estimate on a fine-grained grid and the99

additional guidance term on a coarse grid, reducing the NFE while preserving sample quality.100

Efficient diffusion models Beyond advanced ODE/SDE solvers, various methods have been101

proposed to speed up pre-trained diffusion models. Distillation methods [35, 27] compress a pre-102

trained “teacher” model into a “student” model that can advance multiple timesteps in one forward103

pass. While these methods reduce the number of sampling steps, they incur substantial retraining104

costs. Cache-based techniques exploit feature redundancy within the denoising neural network ϵ̂θ.105

DeepCache [26] reuses high-level U-Net activations across adjacent steps. Learning-to-Cache [25]106

introduces a layer-wise caching mechanism that dynamically reuses transformer activations across107

timesteps via a timestep-conditioned router. ∆-Dit [4] leverages stage-adaptive caching of block-108

specific feature offsets in DiT models to speed up inference without retraining. These methods deliver109

inference speedups without retraining but depend heavily on the model’s internal architecture. More110

recently, several works have noted that CFG doubles the NFE per denoising step and have proposed111

methods to reduce this extra cost. Adaptive Guidance [3] adaptively skips redundant guidance steps112

based on cosine similarity between conditional and unconditional predictions. FasterCache [24]113

reuses attention features and conditional-unconditional residuals to mitigate CFG overhead. Although114

these methods reduce the NFE, they lack a rigorous theoretical foundation and leave further savings115

on the table. Our approach delivers a more efficient and theoretically grounded method of guided116

diffusion by directly exploiting the CFG’s intrinsic dynamics.117
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Figure 2: Time-derivative norms of the noise estimate ϵ̂c(xt) and additional guidance δϵ̂c(xt).
We plot the L2 norms of the time derivatives d

dt ϵ̂c(xt) and d
dtδϵ̂c(xt) across diffusion timesteps for

Stable Diffusion 1.5 and Stable Diffusion 3.5 Large. The results confirm that the noise estimate
exhibits greater temporal sensitivity compared to the guidance term. Shaded areas denote two standard
deviations over multiple prompts.

3 Method118

In this section, we introduce Tortoise and Hare Guidance (THG), which accelerates diffusion119

model inference by leveraging the asymmetry between the noise estimate and the additional guidance120

terms. Since the additional guidance term varies more slowly w.r.t. the denoising timestep t than the121

noise estimate term, we apply a multirate integration scheme that uses a coarser timestep grid for the122

additional guidance term (Sec. 3.1 and Sec. 3.2). We then perform an approximation error-bound123

analysis to determine the appropriate grid granularity (Sec. 3.3). Finally, we propose an adaptive124

guidance scale to compensate for any performance degradation resulting from the reduced number of125

evaluation points (Sec. 3.4).126

Preliminaries To accommodate different definitions of the diffusion process [17, 38, 41], we adopt127

a general notation [23] so that the forward process and the diffusion ODE are described as follows:128

q(xt|x0) := N (xt;αtx0, σ
2
t I),

dxt

dt
= f(t)xt +

g2(t)

2σt
ϵ̂θ(xt), xT ∼ N (0, σ2

T I), (3)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t , and t ∈ [0, T ]. (v-prediction models are covered129

in Appendix A.) αt and σt are the predefined noise schedule of the diffusion model. Although130

modern diffusion models primarily operate in the latent space [32], we adopt x (instead of z), as131

our framework is agnostic to this choice. For brevity, we denote the unconditional noise estimate132

ϵ̂∅(xt) := ϵ̂θ(xt,∅), the conditional noise estimate ϵ̂c(xt) = ϵ̂θ(xt, c), the difference of the two133

δϵ̂c(xt) := ϵ̂c(xt)− ϵ̂∅(xt), and the CFG noise estimate ϵ̂ωc (xt) = ϵ̂CFG
θ (xt, c) following [6].134

3.1 A multirate formulation135

We propose a multirate formulation [31], in which the reverse diffusion process is decomposed into136

numerically sensitive and less sensitive components to reduce the number of function evaluations137

(NFE). We begin by writing the diffusion ODE in Eq. 3 by explicitly separating it into two distinct138

terms, the noise estimate and the additional guidance term. By the definition of CFG, we have139

ϵ̂θ(xt) := ϵ̂ωc (xt) = ϵ̂∅(xt) + ω · δϵ̂c(xt) ≡ ϵ̂c(xt) + (ω − 1) · δϵ̂c(xt). (4)

Substituting Eq. 4 into Eq. 3 yields the following:140

d

dt
xt = f(t)xt +

g2(t)

2σt
ϵ̂ωc (xt) = f(t)xt +

g2(t)

2σt
ϵ̂c(xt)︸ ︷︷ ︸

sensitive

+
g2(t)

2σt
(ω − 1)δϵ̂c(xt)︸ ︷︷ ︸
less sensitive

. (5)

We observe a significant difference in temporal sensitivity between the noise estimate term and141

the additional guidance term. Figure 2 plots the time-derivative norms of ϵ̂c(xt) and δϵ̂c(xt),142

confirming that the noise estimate varies more rapidly than the additional guidance term. This result143
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Algorithm 1 Tortoise and Hare Guidance Algorithm

Require: xT ∼ N (0, σ2
T I) ▷ Initial noise

Require: ω ≥ 0 ▷ Guidance scale
Require: {ti}0≤i≤N , t0 = T, tN = 0 ▷ Fine-grained timestep grid
Require: C ⊂ {ti|0 ≤ i ≤ N}, 0 ∈ C, T ∈ C ▷ Coarse timestep grid

1: xT
T ← xT

2: xH
T ← 0

3: for i = 0 to N − 1 do
4: ϵ̂c ← ϵ̂θ(x

T
ti + xH

ti , c) ▷ 1 NFE
5: xT

ti+1
← Solver(xT

ti , ϵ̂c, ti, ti+1) ▷ Compute xT
ti+1

given xT
ti

6: if ti ∈ C then
7: ϵ̂∅ ← ϵ̂θ(x

T
ti + xH

ti ,∅) ▷ 1 NFE (only if ti ∈ C)
8: δϵ̂c ← ϵ̂c − ϵ̂∅
9: j ← i

10: repeat ▷ Compute xH up to the next coarse timestep
11: j ← j + 1
12: xH

tj ← Solver(xH
ti , (ω − 1) · δϵ̂c, ti, tj) ▷ Compute xH

tj given xH
ti

13: until tj ∈ C ▷ tj equals the next coarse timestep at inner loop exit
14: end if
15: end for
16: x0 ← xT

0 + xH
0

17: return x0

clearly demonstrates that the noise estimate exhibits greater numerical sensitivity than the additional144

guidance.145

This motivates the use of a multirate method [36] where the sensitive term is integrated on a fine-146

grained grid, and the less sensitive term is integrated on a coarse grid. We split the diffusion ODE147

(Eq. 5) into the following system of ODEs:148

d

dt
xT
t = f(t)xT

t +
g2(t)

2σt
ϵ̂c(x

T
t + xH

t ), (6)

d

dt
xH
t = f(t)xH

t +
g2(t)

2σt
(ω − 1)δϵ̂c(x

T
t + xH

t ), (7)

where xT
T = xT , xH

T = 0, and xt := xT
t + xH

t . The tortoise xT
t covers the noise estimate part of149

the diffusion ODE, while the hare xH
t takes care of the additional guidance term. We call the ODE150

integrated on the fine-grained grid the tortoise equation (Eq. 6), and the ODE integrated on the coarse151

grid the hare equation (Eq. 7). Intuitively, the hare equation uses coarser timestep intervals—i.e. larger152

steps—allowing it to skip unnecessary computation and thus significantly improve the efficiency of153

integrating the diffusion ODE. Moreover, because both equations retain the standard diffusion ODE154

form, existing solvers such as DDIM [37] can be applied to each equation without modification.155

3.2 Tortoise and Hare Guidance156

Solving the hare equation (Eq. 7) on the coarse grid is straightforward, since every coarse timestep is157

also a fine-grained timestep. By contrast, because the tortoise equation (Eq. 6) requires the full state158

xt = xT
t + xH

t at every fine-grained timestep, we must infer xH
t at those intermediate points [31].159

Instead of using generic extrapolation methods [24], we exploit a property of diffusion model solvers:160

given xt and ϵ̂θ(xt), they can deterministically compute xs for any s < t by running the chosen solver161

from t to s. From each coarse timestep, we run the solver not only to compute xH
t for the next coarse162

timestep but also to populate xH
t for all intermediate fine-grained timesteps, thereby constructing the163

full trajectory of xH
t on the fine-grained grid for use in integrating the tortoise equation.164

Building on this formulation, we propose an implementation strategy summarized in Algorithm 1.165

While the standard diffusion solver evaluates both ϵ̂c(xt) and δϵ̂c(xt) at every fine-grained timestep,166

our scheme evaluates δϵ̂c(xt) only on the coarse grid C ⊂ {t0, . . . , tN}, thereby significantly167

reducing NFE. At each coarse step ti ∈ C, the updated guidance term is used to integrate the hare168
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Algorithm 2 Look before you leap

Require: mmax(ti) ▷ Calculated mmax for each timestep
Require: {ti}0≤i≤N , t0 = T, tN = 0 ▷ Fine-grained timestep grid

1: C ← {} ▷ The result is initially an empty set
2: i← 0 ▷ Start advancing the fine-grained grid from the first timestep
3: while i < N do
4: C ← C ∪ {ti} ▷ Add current position
5: i← i+mmax(ti) ▷ Advance mmax(ti) steps
6: end while
7: C ← C ∪ {0} ▷ Include last timestep
8: return C

equation across the fine-grained grid until the next coarse step. We then use the resulting xH
t values169

during the subsequent tortoise equation steps. As a result, the NFE is reduced from 2N to N+ |C|−1170

while preserving the dynamics of the original diffusion ODE. Moreover, it slots seamlessly into171

existing diffusion pipelines without any changes to their core logic.172

3.3 Approximation error bound analysis173

To determine an appropriate coarse grid C for the hare equation, we now turn to an error-based174

criterion. Our objective is to ensure that the integration error of xH
t remains sufficiently small relative175

to that of xT
t . To this end, we adopt a standard multirate strategy [10]. We select coarse step sizes176

such that the ratio between the hare’s approximation error and the tortoise’s approximation error does177

not exceed a user-specified threshold ρ such that ρ ≈ 1:178 ∥∥x̂H
s − xH

s

∥∥
∥x̂T

s − xT
s ∥
≤ ρ. (8)

Here, xT
s and xH

s denote the analytical solutions to the tortoise and hare equations at timestep s,179

while x̂T
s and x̂H

s are the corresponding numerical solutions obtained using the diffusion model solver.180

Given that the solver has order p, the local integration error at a single step scales as [12]:181

x̂s − xs = c · (∆t)p+1 +O((∆t)p+2) (9)

where ∆t is the fine-grained step size and c is an unknown constant. Let the coarse step size be m∆t,182

meaning the hare leaps m tortoise steps per update. Then, the local integration error of the hare183

equation over one coarse step becomes:184

x̂H
s − xH

s = cH · (m∆t)p+1 +O
(
(∆t)p+2

)
. (10)

In contrast, the tortoise equation accumulates error over m fine-grained steps:185

x̂T
s − xT

s = cT ·m(∆t)p+1 +O
(
(∆t)p+2

)
, (11)

Taking the ratio from Eq. 8 and ignoring higher-order terms, we obtain:186 ∥∥x̂H
s − xH

s

∥∥
∥x̂T

s − xT
s ∥

=

∥∥cH∥∥mp+1(∆t)p+1

∥cT∥m(∆t)p+1
= mp

∥∥cH∥∥
∥cT∥ ≤ ρ, ∴ m ≤

(
ρ
∥∥cT∥∥/∥∥cH∥∥)1/p . (12)

Since m must be a positive integer, we define the maximum allowable value as:187

mmax := max
(
1,
⌊(
ρ∥cT∥/∥cH∥

)1/p⌋)
. (13)

Estimating the error constants To compute mmax, we need estimates of ∥cT∥ and ∥cH∥ without188

relying on the analytic solution xs. We accomplish this using the Richardson extrapolation method189

[12] . First, solve the ODE once using step size ∆t:190

x̂(1)
s − xs = c · (∆t)p+1 +O

(
(∆t)p+2

)
. (14)

Next, solve again using two steps of size ∆t/2:191

x̂(2)
s − xs = c · 2(∆t/2)p+1 +O

(
(∆t)p+2

)
. (15)
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Figure 3: Approximation error bounds of the tortoise xT
t and the hare xH

t . We show the per-
timestep error bound of the tortoise and the hare terms across sampling steps. The consistently higher
bounds for the tortoise curve indicate that the noise estimate is more sensitive to timestep resolution
than the additional guidance. Shaded areas denote two standard deviations over multiple prompts.

Subtracting Eq. 14 and Eq. 15 yields192

x̂(1)
s − x̂(2)

s = c ·
(
1− 2−p

)
(∆t)p+1 +O

(
(∆t)p+2

)
. (16)

If we ignore the higher-order terms, the norm of this difference provides a direct estimate proportional193

to ∥c∥. We apply this procedure independently to both the tortoise and hare equations to estimate194

∥cT∥ and ∥cH∥, respectively. Empirical results (Fig. 3) on 30,000 prompts from the COCO 2014195

dataset [22, 30] show that ∥cT∥ is greater than ∥cH∥ for most cases, confirming that the tortoise196

equation is more sensitive to timestep resolution. After estimating mmax with ∥cT∥ and ∥cH∥, we197

build the coarse timestep grid C via the “look before you leap” strategy (Algorithm 2). Starting at198

the first fine-grained timestep t0, we insert coarse timesteps so that they lie mmax(ti) steps ahead,199

keeping the local error ratio below ρ.200

3.4 Adjusting Guidance Scales201

Approximating the hare at fine-grained timesteps can lead to a degradation in output quality. To202

compensate for this, we propose adjusting the guidance scale whenever the additional guidance term203

is used more than once per timestep. In particular, we introduce a constant boost factor b and scale204

the guidance term: δϵ̂c ← b · δϵ̂c. This simple multiplicative adjustment improves sample quality,205

especially in cases where the inner loop (which integrates the hare equation) is repeated multiple times206

for each coarse step. Our method draws inspiration from prior work such as CFG-Cache [24], which207

amplifies guidance in the frequency domain using FFT. However, unlike FFT-based methods, our208

approach avoids the overhead of spectral transforms, which can be computationally expensive for high-209

dimensional latent variables. The additional guidance term predominantly contains low-frequency210

information in the early stages of sampling and vice versa [13]. Therefore, selectively enhancing the211

frequency components of the additional guidance term per timestep has low significance.212

Furthermore, CFG and the additional guidance term are of low significance at the later phase of the213

reverse diffusion process [21, 3]. We leverage this fact by introducing a threshold timestep value thi214

and substituting δϵ̂c ← 0 if ti ≥ thi. This simple adjustment helps reduce the NFE even further.215

4 Experiments216

4.1 Experimental Settings217

Compared methods To demonstrate the effectiveness of our approach, we compare against CFG-218

Cache [24], a training-free acceleration technique that reuses conditional and unconditional outputs in219

video diffusion models. Given that CFG-Cache exploits a timestep-adaptive enhancement technique220

to mitigate fine-detail degradation, we evaluate both the full CFG-Cache (with enhancement) and221

a variant without this enhancement (denoted “CFG-Cache w/o FFT”). All variants are adapted to222

image diffusion models for a fair comparison.223

Implementation details We build Tortoise and Hare Guidance with PyTorch [29], Diffusers [40],224

and Accelerate [11]. We evaluate two pretrained diffusion models—Stable Diffusion 1.5 [32] and225
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Table 1: Comparison of methods in terms of visual quality on the COCO 2014 dataset. Our method
is marked in blue . The best and second-best results are highlighted and underlined, respectively.
The results are averaged over 3 independent experiments.

Method NFE ↓ FID ↓ CMMD ↓ CS ↑ IR ↑
Stable Diffusion 1.5 with DDIM (N = 50, ω = 7.5)

CFG (baseline) [16] 100 14.057 0.58885 26.294 0.14765

CFG-Cache w/o FFT [24] 70 14.240 0.59187 26.141 0.08757
CFG-Cache [24] 70 14.367 0.59556 26.180 0.09735
Tortoise and Hare (Ours) 70 14.165 0.59223 26.189 0.11499

Stable Diffusion 3.5 Large with Euler method (N = 28, ω = 3.5)

CFG (baseline) [16] 56 68.158 0.81106 26.624 1.03569

CFG-Cache w/o FFT [24] 38 67.931 0.76448 26.643 1.00715
CFG-Cache [24] 38 67.914 0.75324 26.668 1.00745
Tortoise and Hare (Ours) 38 68.252 0.80092 26.672 1.02365

Table 2: Ablation study for the hyperparameter b.
Method NFE ↓ FID ↓ CMMD ↓ CS ↑ IR ↑
b = 1.00 70 13.811 0.58364 26.137 0.09395
b = 1.05 70 13.988 0.58794 26.162 0.10456
b = 1.10 70 14.232 0.59354 26.197 0.11576
b = 1.15 70 14.472 0.59783 26.221 0.12639
b = 1.20 70 14.729 0.60260 26.246 0.13478

Table 3: Ablation study for the hyperparameter ρ.
Method NFE ↓ FID ↓ CMMD ↓ CS ↑ IR ↑
ρ = 0.9 75 14.128 0.59044 26.193 0.11942
ρ = 1.0 73 14.148 0.59068 26.200 0.11949
ρ = 1.1 70 14.232 0.59354 26.197 0.11576
ρ = 1.2 69 14.336 0.59306 26.221 0.11262
ρ = 1.3 67 14.280 0.59521 26.197 0.10849

Stable Diffusion 3.5 Large [39, 9]. We use prompt–image pairs randomly sampled from COCO226

2014 [22, 30]: 30,000 pairs for SD 1.5 and 1,000 pairs for SD 3.5 Large. Experiments are run on a227

server with an AMD EPYC 74F3 24-core CPU, 1 TB of RAM, and 8 NVIDIA A100 80GB GPUs.228

Hyperparameters (ρ, b, thi) are set to (1.1, 1.1, 38) for SD 1.5 and (1.0, 1.2, 21) for SD 3.5 Large.229

We report average values from 3 independent evaluations.230

4.2 Main Results231

Quantitative comparison Table 1 compares our method to two CFG-Cache variants in terms232

of distributional similarity metrics such as FID [15, 28] and CMMD [20], together with prompt233

fidelity metrics such as CLIP Score (CS) [14] and ImageReward (IR) [42] under the same number234

of function evaluations (NFE). On SD 1.5, all methods cut NFE from 100 to 70; ours lowers FID235

(14.165 vs. 14.240), matches CMMD, and improves CS and IR over CFG-Cache w/o FFT, and beats236

full CFG-Cache on CS and IR while keeping FID competitive. On SD 3.5 Large, all cut NFE from237

56 to 38; although CFG-Cache slightly leads on FID and CMMD, our method delivers nearly equal238

FID/CMMD with the highest IR and tied CS. These results show that THG generalizes across solvers239

and scales, preserving sample distribution and text alignment under aggressive step reduction. The240

tradeoff of distributional similarity and prompt fidelity is further discussed in Appendix B.241

Qualitative comparison Fig. 4 compares images generated by our method and the two CFG-Cache242

variants. The results demonstrate that THG effectively preserves image fidelity and fine details.243

4.3 Ablation Studies244

Boost factor b Table 2 shows how varying the boost factor b affects inference quality at 70 NFE245

budget with the same latents xT . As b increases from 1.00 to 1.20, we observe a steady rise in IR from246

0.09395 up to 0.13478, indicating stronger image–text alignment, and a modest gain in CS. However,247

this comes at the cost of higher FID and CMMD values, reflecting a gradual drop in distributional248

similarity. We select b = 1.10 as our default because it strikes the best balance: it substantially boosts249
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NFE = 100 NFE = 70 NFE = 70 NFE = 70

NFE = 100

(a) CFG (baseline)

NFE = 70

(b) CFG-Cache w/o FFT

NFE = 70

(c) CFG-Cache

NFE = 70

(d) Ours

Figure 4: Comparison of visual results for the prompts “A group of zebras grazing in the grass.” and
“Two cows on a hill above a valley and mountains on the other side.” from the COCO 2014 dataset.

IR (0.11576) with only a moderate increase in FID (14.232) and CMMD (0.59354) relative to lower250

b values.251

Error-ratio threshold ρ Table 3 summarizes the effect of varying ρ with the same latents xT .252

Lowering ρ from 1.1 to 0.9 results in more conservative hare leaps—NFE rise from 70 to 75—and253

yields slightly better FID (14.128 vs. 14.232) and CMMD (0.59044 vs. 0.59354), at the expense of254

marginally lower IR (0.11942 vs. 0.11576). Increasing ρ to 1.3 reduces NFE to 67 but degrades FID255

(14.280) and IR (0.10849). We choose ρ = 1.1 as our default since it achieves the best trade-off: a256

30% NFE reduction (70 NFE) while maintaining competitive fidelity and alignment metrics.257

5 Conclusion258

We present Tortoise and Hare Guidance, a training-free acceleration framework for diffusion sampling259

that leverages a multirate reformulation of classifier-free guidance (CFG). Exploiting the asymmetric260

sensitivity of the noise estimate and the additional guidance term to numerical error, Tortoise and261

Hare Guidance integrates the noise estimate on a fine-grained grid while integrating the additional262

guidance term on a coarse grid. This approach allows for a substantial reduction in the number263

of function evaluations (NFE) without sacrificing generation quality. With an error-bound-aware264

timestep sampler and a guidance scale adjustment, our method achieves up to 30% faster sampling265

while preserving fidelity across models like Stable Diffusion 1.5 and 3.5 Large, demonstrating the266

effectiveness of multirate integration for real-time high-quality generation.267

Limitations Tortoise and Hare Guidance is currently designed and evaluated under first-order268

solvers such as DDIM and the Euler method. While this allows for broad compatibility and simplicity,269

the potential benefits of combining our approach with higher-order solvers remain unexplored.270

Additionally, our experiments are limited to latent diffusion models and benchmark datasets such as271

COCO 2014. Extending the evaluation to a wider range of architectures, modalities, and downstream272

tasks will help assess the generality and robustness of our method.273

Broader Impact By reducing sampling cost without retraining, Tortoise and Hare Guidance lowers274

the barrier to deploying diffusion models in real-time applications such as creative tools, accessibility275

services, and mobile environments. This could result in accelerating the production of synthetic276

media, including deepfakes and misleading content. Nonetheless, the capabilities of Tortoise and277

Hare Guidance remain bounded by those of the underlying diffusion model, introducing a limited278

impact to the quality of such synthetic media.279
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Table 4: Ablation study for the guidance scale ω with CFG [16].
Method NFE ↓ FID ↓ CMMD ↓ CS ↑ IR ↑

Stable Diffusion 1.5 with DDIM (N = 50)

ω = 2.5 100 8.438 0.56672 25.153 -0.28577
ω = 3.5 100 9.143 0.54192 25.687 -0.09190
ω = 4.5 100 10.644 0.54764 25.935 0.00670
ω = 5.5 100 12.030 0.56171 26.110 0.07195
ω = 6.5 100 13.222 0.57673 26.225 0.11582
ω = 7.5 (baseline) 100 14.133 0.58948 26.295 0.14764
ω = 8.5 100 14.902 0.60343 26.369 0.17431

Figure 5: Generated images using ω = 2.5 for the prompts “A group of zebras grazing in the grass.”,
“A yellow commuter train traveling past some houses.”, “A couple of men standing on a field playing
baseball.”, and “Zoo scene of children at zoo near giraffes, attempting to pet or feed them.” from the
COCO 2014 dataset.

A v-prediction models396

Recent models such as Stable Diffusion 3.5 [39] directly infer v, or the velocity field of the reverse397

diffusion process. The diffusion ODE is then defined as398

d

dt
xt = v̂θ(xt), xT ∼ N (0, I). (17)

By the definition of CFG [16], we have399

v̂θ(xt) := v̂∅(xt) + ω · (v̂c(xt)− v̂∅(xt)) ≡ v̂c(xt) + (ω − 1) · δv̂c(xt) (18)

where δv̂c(xt) := v̂c(xt)− v̂∅(xt). Substituting Eq. 18 into Eq. 17 yields the following:400

d

dt
xt = v̂c(xt) + (ω − 1) · δv̂c(xt). (19)

We split this diffusion ODE into a multirate system of ODEs similar to Section 3.1.401

d

dt
xT
t = v̂c(x

T
t + xH

t ),
d

dt
xH
t = (ω − 1) · δv̂c(xT

t + xH
t ). (20)

Both equations retain the form of Eq. 17 so that existing solvers as the Euler method can be applied402

to each equation without modification. Furthermore, Algorithm 1 could be utilized unchanged since403

it is agnostic to the form of equation or the type of the diffusion model solver.404

B Tradeoff of distributional similarity and prompt fidelity405

Tables 1 and 2 demonstrate a tradeoff between distributional similarity metrics (FID, CMMD) and406

prompt fidelity metrics (CS, IR). When the prompt fidelity metrics improve so that each image matches407

better with the given prompt, the distributional similarity metrics worsen so that the distribution of408

the images is further from that of real images.409

We further investigate this phenomenon by conducting an additional ablation study for the guidance410

scale ω using Stable Diffusion 1.5 and CFG. Table 4 shows how the metrics change as ω is changed.411
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The minimum FID is achieved at ω = 2.5 and the minimum CMMD is achieved at ω = 3.5. However,412

they suffer from low CS and IR. Generated images using ω = 2.5 are visualized in Fig. 5, showing413

degraded details or insufficient text alignment. This suggests that lower FID or CMMD does not414

always indicate better generation quality. While these distributional similarity metrics measure both415

image plausibility and diversity, they can possibly fail to report high-quality details of the images416

with lower values.417

Since the global structure of each image is determined by the initial few steps of the reverse diffusion418

process [21, 3], the images generated by the methods in Table 1 have mostly shared global structures419

and differ on delicate details. Given that, we suggest that the human-perceived quality of generated420

samples could be better explained by the prompt fidelity metrics compared to the distributional421

similarity metrics. Our results in Table 1 with slightly higher FID or CMMD therefore do not indicate422

a significant degradation of generation quality.423

C Proof for approximation error bound analysis424

We provide a proof for error accumulation presented in Section 3.3. More rigourous analysis of error425

bounds could be found in Section II. 3. of [12].426

Theorem 1. Assume the local integration error of an ODE using a solver of order p and timestep427

size ∆t is given by:428

x̂t−∆t − xt−∆t = c · (∆t)p+1 +O((∆t)p+2) (21)
for sufficiently small ∆t. Then the error of using the same solver repeatedly for m steps is given by429

x̂t−m∆t − xt−m∆t = c ·m(∆t)p+1 +O((∆t)p+2). (22)

Proof. We use mathematical induction. (Base step) For m = 1, Eq. 22 reduces to the assumption.430

(Inductive step) Assume the error of using the solver m times is given by Eq. 22. We proceed to431

the next iteration to obtain x̂t−(m+1)∆t. Let x̃t−(m+1)∆t be the exact solution given by solving the432

ODE from t−m∆t to t− (m+ 1)∆t using x̂t−m∆t. The error in Eq. 22 is transported to the next433

timestep as434

x̃t−(m+1)∆t − xt−(m+1)∆t = (I +O(∆t)) (x̂t−m∆t − xt−m∆t) (23)

= c ·m(∆t)p+1 +O((∆t)p+2). (24)

On the other hand, the local error of the next iteration is also given by Eq. 21:435

x̂t−(m+1)∆t − x̃t−(m+1)∆t = c · (∆t)p+1 +O((∆t)p+2). (25)

The error of using the solver m+ 1 times is thus436

x̂t−(m+1)∆t − xt−(m+1)∆t = c · (m+ 1)(∆t)p+1 +O((∆t)p+2). (26)

Therefore the error of using the ODE solver m times is given by Eq. 22 for all positive integer m.437

D More details for Richardson Extrapolation438

We specify further details about the computation of the coarse timestep grid C. We calculate439

∥x̂T(1)
s − x̂

T(2)
s ∥ and ∥x̂H(1)

s − x̂
H(2)
s ∥ by solving both the tortoise and hare equations on the fine-440

grained timestep grid using Algorithm 3. In particular, for each denoising step ti, we first find x̂
(1)
ti+1

441

by using the diffusion model solver once from ti to ti+1. Then we find x̂
(2)
ti+1

by using the diffusion442

model solver twice, from ti to (ti + ti+1)/2 and from (ti + ti+1)/2 to ti+1. We use x̂
(1)
ti+1

for the443

next denoising step to ensure that we follow the reference trajectory of CFG [16]. Together with444

Algorithm 2, we obtain the coarse timestep grid C specified in Table 5.445

E More qualitative results446

Figure 6 shows more qualitative results for Stable Diffusion 1.5. Figures 7 and 8 show more qualitative447

results for Stable Diffusion 3.5 Large.448
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Algorithm 3 Richardson Extrapolation

Require: xT ∼ N (0, σ2
T I) ▷ Initial noise

Require: ω ≥ 0 ▷ Guidance scale
Require: {ti}0≤i≤N , t0 = T, tN = 0 ▷ Fine-grained timestep grid

1: xT
T ← xT

2: xH
T ← 0

3: for i = 0 to N − 1 do
4: ϵ̂c ← ϵ̂θ(x

T
ti + xH

ti , c)

5: ϵ̂∅ ← ϵ̂θ(x
T
ti + xH

ti ,∅)
6: δϵ̂c ← ϵ̂c − ϵ̂∅
7: x̂

T(1)
ti+1
← Solver(xT

ti , ϵ̂c, ti, ti+1) ▷ x̂
(1)
ti+1

of the tortoise

8: x̂
H(1)
ti+1
← Solver(xH

ti , (ω − 1) · δϵ̂c, ti, ti+1) ▷ x̂
(1)
ti+1

of the hare
9: tm = (ti + ti+1)/2 ▷ Midpoint of current and next timesteps

10: x̂
T(2)
tm ← Solver(xT

ti , ϵ̂c, ti, tm)

11: x̂
H(2)
tm ← Solver(xH

ti , (ω − 1) · δϵ̂c, ti, tm)

12: ϵ̂c ← ϵ̂θ

(
x̂
T(2)
tm + x̂

H(2)
tm , c

)
13: ϵ̂∅ ← ϵ̂θ

(
x̂
T(2)
tm + x̂

H(2)
tm ,∅

)
14: δϵ̂c ← ϵ̂c − ϵ̂∅
15: x̂

T(2)
ti+1
← Solver(x̂T(2)

tm , ϵ̂c, tm, ti+1) ▷ x̂
(2)
ti+1

of the tortoise

16: x̂
H(2)
ti+1
← Solver(x̂H(2)

tm , (ω − 1) · δϵ̂c, tm, ti+1) ▷ x̂
(2)
ti+1

of the hare

17: xT
ti+1
← x̂

T(1)
ti+1

▷ Tortoise of next step

18: xH
ti+1
← x̂

H(1)
ti+1

▷ Hare of next step
19: end for
20: return ∥x̂T(1)

ti+1
− x̂

T(2)
ti+1
∥, ∥x̂H(1)

ti+1
− x̂

H(2)
ti+1
∥

Table 5: Obtained coarse timestep grid for different ρ values. For brevity, only indices of the timesteps
are shown.
ρ {i|ti ∈ C}

Stable Diffusion 1.5 with DDIM (N = 50, ω = 7.5)

0.9 {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49}

1.0 {0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49}

1.1 {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49}

1.2 {0, 1, 2, 3, 4, 5, 7, 9, 11, 14, 17, 20, 23, 26, 29, 31, 33, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47,
48, 49}

1.3 {0, 1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28, 31, 34, 36, 38, 40, 42, 44, 45, 46, 47, 48, 49}

Stable Diffusion 3.5 Large with Euler method (N = 28, ω = 3.5)

0.9 {0, 1, 2, 3, 5, 7, 10, 13, 16, 18, 20, 22, 23, 24, 25, 26}
1.0 {0, 1, 2, 4, 6, 9, 12, 15, 18, 20, 22, 23, 24, 25, 26}
1.1 {0, 1, 2, 4, 6, 9, 13, 17, 20, 22, 23, 24, 25, 27}
1.2 {0, 1, 2, 4, 7, 11, 15, 19, 21, 23, 25, 27}
1.3 {0, 1, 3, 6, 10, 15, 19, 22, 24, 26}
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Prompt: Two horses are frolicking as spectators take pictures.

Prompt: a male with a purple jacket on skies posing for a picture

(a) CFG (baseline)
NFE = 100

(b) CFG-Cache w/o FFT
NFE = 70

(c) CFG-Cache
NFE = 70

(d) Ours
NFE = 70

Figure 6: Comparison of visual results for prompts from the COCO 2014 dataset using Stable
Diffusion 1.5.

Prompt: A woman and a man are playing the nintendo wii video game system

Prompt: A cat sitting on a window sill near a basket.

(a) CFG (baseline)
NFE = 56

(b) CFG-Cache w/o FFT
NFE = 38

(c) CFG-Cache
NFE = 38

(d) Ours
NFE = 38

Figure 7: Comparison of visual results for prompts from the COCO 2014 dataset using Stable
Diffusion 3.5 Large.
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Prompt: A single giraffe standing in the middle of tall grass

Prompt: A bus that sign reads “Crosstown”. It is a metro bus.

Prompt: A red fire hydrant is set up in a grassy clearing.

Prompt: A stop sign and one way sign are in front of a large building

(a) CFG (baseline)
NFE = 56

(b) CFG-Cache w/o FFT
NFE = 38

(c) CFG-Cache
NFE = 38

(d) Ours
NFE = 38

Figure 8: Comparison of visual results for prompts from the COCO 2014 dataset using Stable
Diffusion 3.5 Large.
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F Licenses449

• Stable Diffusion 1.5 – weights released under the CreativeML Open RAIL-M license (v1.0;450

https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)451

• Stable Diffusion 3.5 Large – weights released under the Stability AI Community Licence452

v3 (research & commercial use for organizations or individuals with < USD 1 M annual453

revenue; https://stability.ai/license)454

• FID – clean-FID implementation by Parmar et al., released under the MIT License (v1.0;455

https://github.com/GaParmar/clean-fid/blob/main/LICENSE)456

• CMMD – PyTorch implementation of CLIP Maximum Mean Discrepancy by Sayak457

Paul, released under the Apache License 2.0 (v2.0; https://github.com/sayakpaul/458

cmmd-pytorch/blob/main/LICENSE)459

• CLIP Score – TorchMetrics’ CLIPScore module released under the Apache License460

2.0 (v2.0; https://github.com/Lightning-AI/metrics/blob/master/LICENSE;461

Lightning-AI)462

• ImageReward – model and evaluation code released under the Apache License 2.0 (v2.0;463

https://github.com/THUDM/ImageReward/blob/main/LICENSE; Xu et al., 2023)464

• MS COCO 2014:465

– Annotations released under the Creative Commons Attribution 4.0 International license466

(CC BY 4.0; https://creativecommons.org/licenses/by/4.0/)467

– Underlying images governed by Flickr Terms of Use; users must comply with Flickr’s468

rules when reusing or redistributing any COCO images.469
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